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The equations of motion of a continuous medium for a barotropic fluid were de- 

rived by Weber [l] in Lagrange variables, and Serrin [2] extended these to the 
isentropic flow. It is shown here that the left-hand part of Weber equation repre- 

sents “in the small” the total velocity (an analog of the Cauchy-Helmholtz theo- 

rem). These equations are extended to flows of a viscous compressible fluid, and 

an attempt is made to specify with the use of the Clebsch theorem [2] the surface 

forces in terms of gradients of potential functions. This is shown to be feasible 

in a number of practically important cases. 

1. Derivrtion of Weber equ&tfone. We write the equations of motion of 

a continuous medium in the form [2] 

pu’ = F + P (1.1) 

where p is the mass density, u is the velocity vector of a fluid particle, and F and P 
are the vectors of mass and surface forces, respectively. 

We use the following notation: zl,and ak denote Euler and Lagrange variables, respec- 

tively ; a dot denotes a total derivative with respect to time t ; duj / dxk = uj,k and 

duj / dak= Uj,k denote partial derivatives with respect to Euler and Lagrange varia- 
bles. respectively ; conventional operators of vector analysis written in lower case letters 

relate to Euler variables, while those expressed in capitals relate to Lagrange variables ; 
subscripts i and k run through 1, 2, 3: 6 jk denotes the Kroneker delta ; p is the coef- 

ficient of shear viscosity ; h is the coefficient of second viscosity ; ui” is the transla- 

tional velocity of a fluid particle ; (0jh --_ ‘/3(Uj,i - t&k,;) iS the angular VdOCity 

of a fluid particle ; ejk == ‘/2 (zci,k $- Uk, fj is the relative strain of a fluid particle ; 
2, :- p-’ is the specific volume ; CT is the stress tensor; I = l3 -{-- p / p is the en- 
thalpy ; E is the internal energy ; T is the temperature ; % is the Stefan-Boltzmann 

constant ; r = i,s, + i,r, _I-- i,z, is the position vector of the fluid particle trajec- 

tory ; i, are unit vectors ; S is the entropy ; c = (ypv)‘!~ is the speed of sound, and 

y is the ratio of specific heats. 

We denote the formulas for the transformation of representation in Euler variables to 
that in Lagrange variables as follows: the Jacobian 

grad f = J-’ (il [f, x2, x31 -t- i, [x1, f, 4 i- i3 h, x2, II) 

div f = J-’ (If, 52, XJ -t- [X~, f, X31 + [XI, 52, fl) etc.. 

If we denote the potential of the mass force vector by Q, then F = - grad Q. Multi- 

plying the two sides of Eq. (1.1) by grad r, we have 
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-$ (uqgrad r) = grad ($ - Q) + UP grad r (1.2) 

(uegrad r = il (r, i U) + i, (r:; U) + i3 (r, 3~) = ik (r, EU)) 

Integration of Eq. (1.2) with respect to time from t, to t yields the Weber equation of 
motion 

U - U, = grad 9 + A (1.3) 
where 

$=i(-$- Q)dr, A={vPgradrdr, U = ugrad r 
to to 

and the subscript zero indicates that the related quantity is taken at the instant of time 

t,. In projections on the axes of rectangular coordinates 0X,X2X, Eq. (1.3) assumes 

the form 

~(~ixi i; - UOiXoj, ;) = I#, E + L4, 0.4) 
_&I ’ 

It can be shown that vector U is the algebraic sum of three vectors: the vector of 

translational velocity Up, the vector of deformation rate, and the vector of rotational 

velocity (an analog of the Cauchy-Helmholtz theorem [4]). To prove this statement 

we use the Kirchhoff formula [Sj 

Xj,; = 6jk + Uj,$t 

Substituting this relationship into the left-hand part of (1.3) and carrying out the compu- 

tations expounded in [4],we obtain the following expression for the left-hand part of Eq. 

(1.3): 
Uj = Ujp + EjkGXk - Wjk6Xk 

in which all terms are the same as in the Cauchy-Helmholtz formulas [4], except of the 

opposite sign at CO~J$Z~, which is due to the Lagrange form of presentation. This proves 

that vector U represents the total velocity. 
For reference we present the formulas which relate velocities u and U (the deriva- 

tive of Uk is not taken): 

Ul = J-’ ru1, x2, 231, u2 = J-11x1, uz, 531, u3 - -1-l 1x1, x3, u31 

2. Some prrticulrr form1 of squrtlon (1, 9). Equationsofthe form 
(1.3) are complex. To simplify these we begin with the formula for the surface force 
P which we determine as follows. Using the Clebsch theorem p] which states that any 

vector may be presented in the form 

P = grad a + p grad X (2. I) 

where a, p and X are as yet unknown potential functions, we represent A in the form 

A = 1 v(grada+PgradX)dz 
f0 

To determine a, fl and X we consider specific mathematical models. 
Perfect fluid. Let the surface forces be expressed in terms of stress tensors [2], 

i.e. P = div U. Using the additivity hypothesis [6] it is possible to decompose ten- 
sor o into reversible and irreversible parts 
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The rheological equation for a perfect incompressible fluid is of the form f6f 

(7) 6jh- =_ - P7 
s;i = () 

Setting c1 = - p and fi = x = 0 , after some simple computations we reduce the 

equation of motion (1.3) to the form 

u-u o=gradgr, cp’= f-$-.-Q (2.3) 

This implies that the difference U - UQ of total velocity vectors is a potential vector. 

Note that there is an example of vortex fluid flow (Gerstner’s problem [a]) in whichthe 
fluid particle velocity u is not potenti.af. For a barotropic compressible fluid the equa- 

tion of motion (adlabatlc flow) is of the form 

U-U,===gradcp, cp’=+I-R CA 4) 

These equations were derived by Weber [I]. For an isentropic flow fS* = 0) we have 

I21 U - Uo =11- grad ‘p $- q grad S (2.5) 
‘p’+._&Q, 

Y q’ = T 

Viscous fluid. Assuming that for a viscous incompressible fItrid p = cons& 
a= - p1 0 = p = consi., Y = pQ_’ and rot ~1 == grad x, we have 

U - UI, - grad cp, (p’ = $ - _f_ I- s;r - q (2.6) 

These equations are valid for the Couette, Poiseuille,~l~ami~Stokes and generally slow 

flows. 
Ifweset a=-~-+Ml‘,@=x=== 0 and 8’ = div u (0 = hJ), we obtain 

the equations of motion for a compressible fluid in which second viscosity is taken into 

account t 

U-UU,=gradrp-$r*gradod~, cp’ = -!$ - Q - ?I (p - ;LO’) (2.7) 

u 

The system of equations (2.7) can be extended to an isotropically radiating gas. In that 
case it is necessary to set a = - p -i_ x8’ - ,XTP and p = x, ===o. We then have 

1 

If we set j3 = p = COKE%, ~O~CO = grad x and a = - p f X0’ - xTp, the 

equations assume the form t 

U-U0 =gradcp-S(a+~Xfgradudz GL 9) 

to 

rp’ = $12 - s1 - v (p - h0’ + xT4 + px) 

The shear viscosity is partially accoumed for in this system of equations, The Couette 
flow with radiation may be considered as belonging to these flows. 

Let us pass to the derivation of equations of motion for a viscous compressible fluid 

in which the reversible part of tensor ojg I@ for a Newtonian fluid is simply equal to 

pressure p, i.e. cr~k(~) = - p, while its irreversible part is 

oyi = &w&j, + p (%j,S f uk, j) 
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With the use of the Clebsch theorem [3] it is possible to represent the total velocity vec- 

tor in the form 
U=gradh +fgradg 

and obtain the equation of motion of the form 

u-uoI: gradzl-i-S~{gradr--p+(~+~)e’] + 8’gradpfB)dq (2.10) 
lo 

B = ik [div (p grad Uj)] xj k 

From the physical point of view the term B in Eq. (2.10) defines the transfer of momen- 

tum. It can be expressed in terms of Lagrange variables and thus yield particular cases 

such as : incompressible viscous fluid, perfect fluid, etc. 

3, On the rolutfon of particular problems, Stationary flow . 
Let us for simplicity consider a stabilized Couette flow. Boundary conditions are 

u1 = 0, us = 0 (3s = 0, zs = I) 

where l is the distance between plates. We seek a solution of the form 

xi= a, + E (al, a2r 9, f% = @2,? p = Aal 

where A is a specified constant. 

pi = 0. 
From the continuity equation we have %I i = 1, hence 

Since the process is stabilized, U - Ua = 0 and the system of the Navier-Stokes 

equations in terms of Lagrange variables is 
E.f = Ap-” 

The solution with allowance for boundary conditions is of the form 

Jl za,+g [(+qq, x2=a2, p=Aal 

This example shows that in the stationary case the equations are considerably simplified. 

Nonstationary flow. So far we have considered asimpiified surface force P. 

Let us consider now the inertial force. It was shown above that the total velocity can be 
decomposed into translational and rotational velocities and the rate of deformation. 

Using the principle of additivity, it is actually possible to separate the translational velo- 
city from the total velocity by representing the trajectory of fluid particles in the form 

A’ k 1 ah + Eh(aj, t) 

The total velocity is then 

uj = uj + i uh.gk, 3 z uj d_ f (U’), $t 
h’-L 

since the second’ Term is small in comparison with velocity ui, it can be neglected in 
certain cases. 

As an example let us consider Gerstner waves [Zl, This problem is interesting since 
it has an exact analytic solution. Substituting in Eq, (2.3) u for c’ and integrating the 

obtained equation once more with respect to 6, we obtain 



Substituting Gerstner’s solution [ 21 

into the obtained 
for c2 = gm-1 

.(‘l = n, -I- m-‘exp (maJ sin m (a, + ct) 

*r2 = a2 -- m-l exp (maJ cos m (a, + ct) 

P - = consl - ga, + f exp (2mnz) 
P 

system of equations, we conclude that the latter is exactly satisfied 

(g is the acceleration of gravity, m-l is the amplitude of oscilla- 
tions, and c is the wave propagation velocity). 

Jet us consider a nonstationary Couette flow with the following initial and boundary 

conditions : 
t = 0 ) LE1 = 112 == 0, p=o 

x2 = 0, 52 -_ I, 111 L- 112 AL= 0 

In this case it is convenient to represent the solution in the form 

From the continuity equation we again have zri -m= 1 , which yields the following equa- 

tion : 
y=vg,21 Lf 

The general solution of this problem is of the form 
t? 05 

Xl = a1 + $ SSD 
00 n=F1 

exp [ - On2 (t - Z)] sin F sin F) f (b, t) db dz 

Let us consider the particular case of 

f (b, 2) =-+[I-m-exp(-fm)] 

The solution for z, is m 

Xl = a1 - 4AoZ4 (nqm)-1 2 (an 
n=1 

_ q’s [ ““;+ a +A 0,2-a x 
exp (- o,?) - anat - a (o,“al e) exp (- at)] sin (2n -I” naz 

(an2 = (2n - 1)Wv l-2) 

For the stationary mode the expression for maximum velocity (3~s = 1 / 2) may 
written as 

Ulmax = Aod2 / 8~ 

be 

The Cauchy problem. Let the adiabatic flow of a barotropic fluid be defined 
by the following system of equations of motion, by the equation of continuity, and the 

equation of state: u _ u. = grad cp, cp’ = u2/2 - I + aa’, uk = xk’ (3.1) 

poJo = PJ (3.2) 

1 = Io(P / PO) y-l (3.3) 

with the following initial conditions (t = to): 

Zk = z,k(aj), Uk = UOk($), P= PO, 1 = I, (3.4) 

We shall assume that the unknown functions are continuous and have continuous unboun- 
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ded derivatives with respect to specified variables. The problem thus stated is complex, 
however, by introducing new variables of the form bk = z,k(aj) it can be somewhat 

simplified. 
The form of the system of equations of motion (3.1) remains unchanged, but all deri- 

vatives with respect to spatial variables will be expressed in terms of new variables and 

the equation of continuity assumes the form 

PO = PJ (3.5) 

where the Jacobian J is expressed in terms of new variables. This can be proved by 

direct substitution. 

Prior to passing to the derivation of solution, we shall carry out a preliminary analysis. 

Representing density and specific volume in the form p = po(l + p’) and v = 

Vo(l + v’), we write 
V’ = (4 + p’)-’ - 1, v’ = J - 1 

From these expressions follows 

$ co, v’ =O, J ~1, p’+oa, v’+--l, J-PO 

hence the specified quantities vary within the following limits: 

O<p’<oo, - 1 <v’<O, O<J<l 

Taking this into consideration it is possible to expand the equation of state (3.3) into a 

binomial series 

(3.6) 

We disregard in what follows the mass forces and consider the second viscosity coeffi- 

cient as constant. After these preliminaries we can pass to the final statement of the 

Cauchy problem. Initial conditions (3.4) assume the form 

xk = b/t, Uk = Uok(bj), I = Io(b,), V’ = 0 

We seek the solution of the form 00 

Xk = 2 t”‘xkm ( bk) 
m=o (3.7) 

and of a similar form for other functions. After the substitution of series (3.7) into the 

altered system of Eqs. (3. l), (3.5) and (3.6) we obtain the following recurrent relation- 
ships : 

the equation of motion 

the equation of continuity 
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and the equation of state 

Z=Z,(lf i 
q=1 

m m 2 

C tm ~ ~ r)ijSXffi X:~ ~~~)~l] 
m=o z=o k=O T 

From these recurrent relationships we can obtain (by equating terms with equal powers 

of t) the expressions for coefficients of series (3.7). The analysis of the latter shows 
their convergence, since they are majorized by the convergent series 

~~~~~/(~*2}+~/(2.3)+ . ..I 

The radius of convergence of series (3.7) is determined by the interval 0 < t < 1 ikf-' 1, 
where M is the maximum value of the m-th derivative of input data, The existence 

of solution of the Cauchy problem is thereby proved. Its uniqueness follows from the 

uniqueness of the specification of input data. 
Thus Weber equations in some particular cases (stationary periodic flows) yield very 

simple equations which can be solved by conventional analytical methods. 
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The analytical method of calculation of a thee-dimensional boundary layer in 
a compressible fluid stream is considered. The method is based on the use of 
successive approximations and is similar to that used in the case of incompressible 


